D-ARTNET22 V1: a neural network framework against stolen digital artworks getting Non-Fungible Token (NFT) labels
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Principais autores: | Dipro, Farhan Hasin, Simran, Sheikh Saif, Akhter, Mansura, Momo, Ramisa Fariha, Musharrat, Ramisa |
---|---|
Outros Autores: | Hossain, Muhammad Iqbal |
Formato: | Tese |
Idioma: | English |
Publicado em: |
Brac University
2024
|
Assuntos: | |
Acesso em linha: | http://hdl.handle.net/10361/23617 |
Registros relacionados
-
A novel approach for digital image watermarking
por: Mitashe, Mashruha Raquib, et al.
Publicado em: (2016) -
SWT and SIFT based copy-move image forgery detection
por: Das, Taposh, et al.
Publicado em: (2018) -
Traumatic meningeal enhancement detection by deep learning-based biomedical image analysis and handcrafted features extraction
por: Uddin, Mohammad Sakib, et al.
Publicado em: (2024) -
A comparative analysis of the different CNN-LSTM model caption generation of medical images
por: Amin, Mahzabin Yasmin Binte, et al.
Publicado em: (2023) -
Exploring deep features: deeper fully convolutional neural network for image segmentation
por: Kamran, Sharif Amit, et al.
Publicado em: (2017)