Empowering mobile network planning through deep learning: a path to democratization
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2023.
1. autor: | Nabi, Syed Tauhidun |
---|---|
Kolejni autorzy: | Alam, Golam Rabiul |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/23113 |
Podobne zapisy
-
A deep dive into node-level analysis with fusion RNN model for smart LTE network monitoring
od: Islam, Md Rashidul
Wydane: (2024) -
An android application to predict human activity using a deep learning LSTM model
od: Sikder, Debabrata
Wydane: (2024) -
Implementation of machine learning to estimate the air pollutants such as Carbon dioxide, methane, nitrous oxide and total greenhouse gas emissions in Bangladesh
od: Biswas, Sunanda, i wsp.
Wydane: (2022) -
Leveraging sequential deep learning models for detecting multitude of human action categories
od: Pranta, Kazi Al Refat, i wsp.
Wydane: (2024) -
Damaged road detection using Image Processing and Deep Learning
od: Swadesh, Shimran Mahbub, i wsp.
Wydane: (2022)