A deep dive into node-level analysis with fusion RNN model for smart LTE network monitoring
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2023.
1. autor: | Islam, Md Rashidul |
---|---|
Kolejni autorzy: | Alam, Golam Rabiul |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/23110 |
Podobne zapisy
-
Empowering mobile network planning through deep learning: a path to democratization
od: Nabi, Syed Tauhidun
Wydane: (2024) -
An android application to predict human activity using a deep learning LSTM model
od: Sikder, Debabrata
Wydane: (2024) -
Implementation of machine learning to estimate the air pollutants such as Carbon dioxide, methane, nitrous oxide and total greenhouse gas emissions in Bangladesh
od: Biswas, Sunanda, i wsp.
Wydane: (2022) -
Leveraging sequential deep learning models for detecting multitude of human action categories
od: Pranta, Kazi Al Refat, i wsp.
Wydane: (2024) -
Damaged road detection using Image Processing and Deep Learning
od: Swadesh, Shimran Mahbub, i wsp.
Wydane: (2022)