A deep dive into node-level analysis with fusion RNN model for smart LTE network monitoring
This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering, 2023.
Egile nagusia: | Islam, Md Rashidul |
---|---|
Beste egile batzuk: | Alam, Golam Rabiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/23110 |
Antzeko izenburuak
-
Empowering mobile network planning through deep learning: a path to democratization
nork: Nabi, Syed Tauhidun
Argitaratua: (2024) -
An android application to predict human activity using a deep learning LSTM model
nork: Sikder, Debabrata
Argitaratua: (2024) -
Implementation of machine learning to estimate the air pollutants such as Carbon dioxide, methane, nitrous oxide and total greenhouse gas emissions in Bangladesh
nork: Biswas, Sunanda, et al.
Argitaratua: (2022) -
Leveraging sequential deep learning models for detecting multitude of human action categories
nork: Pranta, Kazi Al Refat, et al.
Argitaratua: (2024) -
Damaged road detection using Image Processing and Deep Learning
nork: Swadesh, Shimran Mahbub, et al.
Argitaratua: (2022)