Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Asıl Yazarlar: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Diğer Yazarlar: | Reza, Tanzim |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2024
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/22890 |
Benzer Materyaller
-
An android application to predict human activity using a deep learning LSTM model
Yazar:: Sikder, Debabrata
Baskı/Yayın Bilgisi: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
Yazar:: Chakraborty, Dhruba, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
Yazar:: Ahmed, Istiak, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
Yazar:: Mouli, Nazifa, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Predicting temperature of major cities using machine learning and deep learning
Yazar:: Jaharabi, Wasiou, ve diğerleri
Baskı/Yayın Bilgisi: (2024)