Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Huvudupphovsmän: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Övriga upphovsmän: | Reza, Tanzim |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2024
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/22890 |
Liknande verk
-
An android application to predict human activity using a deep learning LSTM model
av: Sikder, Debabrata
Publicerad: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
av: Chakraborty, Dhruba, et al.
Publicerad: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
av: Ahmed, Istiak, et al.
Publicerad: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
av: Mouli, Nazifa, et al.
Publicerad: (2023) -
Predicting temperature of major cities using machine learning and deep learning
av: Jaharabi, Wasiou, et al.
Publicerad: (2024)