Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Main Authors: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Outros Autores: | Reza, Tanzim |
Formato: | Thesis |
Idioma: | English |
Publicado em: |
Brac University
2024
|
Assuntos: | |
Acesso em linha: | http://hdl.handle.net/10361/22890 |
Registos relacionados
-
An android application to predict human activity using a deep learning LSTM model
Por: Sikder, Debabrata
Publicado em: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
Por: Chakraborty, Dhruba, et al.
Publicado em: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
Por: Ahmed, Istiak, et al.
Publicado em: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
Por: Mouli, Nazifa, et al.
Publicado em: (2023) -
Predicting temperature of major cities using machine learning and deep learning
Por: Jaharabi, Wasiou, et al.
Publicado em: (2024)