Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autori principali: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Altri autori: | Reza, Tanzim |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2024
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/22890 |
Documenti analoghi
-
An android application to predict human activity using a deep learning LSTM model
di: Sikder, Debabrata
Pubblicazione: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
di: Chakraborty, Dhruba, et al.
Pubblicazione: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
di: Ahmed, Istiak, et al.
Pubblicazione: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
di: Mouli, Nazifa, et al.
Pubblicazione: (2023) -
Predicting temperature of major cities using machine learning and deep learning
di: Jaharabi, Wasiou, et al.
Pubblicazione: (2024)