Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Auteurs principaux: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Autres auteurs: | Reza, Tanzim |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2024
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/22890 |
Documents similaires
-
An android application to predict human activity using a deep learning LSTM model
par: Sikder, Debabrata
Publié: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
par: Chakraborty, Dhruba, et autres
Publié: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
par: Ahmed, Istiak, et autres
Publié: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
par: Mouli, Nazifa, et autres
Publié: (2023) -
Predicting temperature of major cities using machine learning and deep learning
par: Jaharabi, Wasiou, et autres
Publié: (2024)