Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Beste egile batzuk: | Reza, Tanzim |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22890 |
Antzeko izenburuak
-
An android application to predict human activity using a deep learning LSTM model
nork: Sikder, Debabrata
Argitaratua: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
nork: Chakraborty, Dhruba, et al.
Argitaratua: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
nork: Ahmed, Istiak, et al.
Argitaratua: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
nork: Mouli, Nazifa, et al.
Argitaratua: (2023) -
Predicting temperature of major cities using machine learning and deep learning
nork: Jaharabi, Wasiou, et al.
Argitaratua: (2024)