Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autores principales: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Otros Autores: | Reza, Tanzim |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2024
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/22890 |
Ejemplares similares
-
An android application to predict human activity using a deep learning LSTM model
por: Sikder, Debabrata
Publicado: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
por: Chakraborty, Dhruba, et al.
Publicado: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
por: Ahmed, Istiak, et al.
Publicado: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
por: Mouli, Nazifa, et al.
Publicado: (2023) -
Predicting temperature of major cities using machine learning and deep learning
por: Jaharabi, Wasiou, et al.
Publicado: (2024)