Leveraging sequential deep learning models for detecting multitude of human action categories
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Hauptverfasser: | Pranta, Kazi Al Refat, Islam, Fahad Mohammad Rejwanul, Ahmed, Khandakar Fahim, Saha, Prince, Rahman, Naimur |
---|---|
Weitere Verfasser: | Reza, Tanzim |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
Brac University
2024
|
Schlagworte: | |
Online Zugang: | http://hdl.handle.net/10361/22890 |
Ähnliche Einträge
-
An android application to predict human activity using a deep learning LSTM model
von: Sikder, Debabrata
Veröffentlicht: (2024) -
Deep learning based predictive analytics for decentralized content caching in hierarchical edge networks
von: Chakraborty, Dhruba, et al.
Veröffentlicht: (2022) -
A conventional & deep learning strategy for analyzing & detecting Bengali fake news in online medium
von: Ahmed, Istiak, et al.
Veröffentlicht: (2023) -
Sentiment analysis to determine employee job satisfaction using machine learning techniques
von: Mouli, Nazifa, et al.
Veröffentlicht: (2023) -
Predicting temperature of major cities using machine learning and deep learning
von: Jaharabi, Wasiou, et al.
Veröffentlicht: (2024)