An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.
Hoofdauteurs: | Bhuiyan, Mahdi Hasan, Haldar, Sumit, Chowdhury, Maisha Shabnam, Bushra, Nazifa, Jilan, Tahsin Zaman |
---|---|
Andere auteurs: | Alam, Md. Ashraful |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2024
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/22888 |
Gelijkaardige items
-
Classification of retinal diseases from OCT images using deep learning models
door: Mokarrom, Md Saif, et al.
Gepubliceerd in: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
door: Hasib, Mehadi Hasan, et al.
Gepubliceerd in: (2021) -
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
door: Nabil, Sheikh MD. Nafis Noor, et al.
Gepubliceerd in: (2024) -
Deep learning based automated diagnosis of Ocular Toxoplasmosis in fundus images using convolutional neural network
door: Choudhury, Prionto Kumar, et al.
Gepubliceerd in: (2024) -
An interpretable transformer based approach to classify Malaria from blood cell images
door: Islam, Mehafuza, et al.
Gepubliceerd in: (2023)