Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.
Hoofdauteurs: | Nabil, Sheikh MD. Nafis Noor, Ahmed, Sabir, Chowdhury, Naimul Haque, Maria, Farhana Eyesmeen |
---|---|
Andere auteurs: | Hossain, Muhammad Iqbal |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2024
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/22857 |
Gelijkaardige items
-
RetinalNet-500: a newly developed CNN model for eye disease detection
door: Toki, Sadikul Alim, et al.
Gepubliceerd in: (2023) -
An efficient deep learning approach to detect neurodegenerative diseases using retinal images
door: Irfanuddin, Chowdhury Mohammad, et al.
Gepubliceerd in: (2023) -
Efficient image processing and machine learning approach for predicting retinal diseases
door: Hasib, Mehadi Hasan, et al.
Gepubliceerd in: (2021) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
door: Sharma, Tanmoyee, et al.
Gepubliceerd in: (2021) -
A secured federated learning system leveraging confidence score to identify retinal disease
door: Eshan, M Sakib Osman, et al.
Gepubliceerd in: (2023)