Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2024.
Egile Nagusiak: | Nabil, Sheikh MD. Nafis Noor, Ahmed, Sabir, Chowdhury, Naimul Haque, Maria, Farhana Eyesmeen |
---|---|
Beste egile batzuk: | Hossain, Muhammad Iqbal |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22857 |
Antzeko izenburuak
-
RetinalNet-500: a newly developed CNN model for eye disease detection
nork: Toki, Sadikul Alim, et al.
Argitaratua: (2023) -
An efficient deep learning approach to detect neurodegenerative diseases using retinal images
nork: Irfanuddin, Chowdhury Mohammad, et al.
Argitaratua: (2023) -
Efficient image processing and machine learning approach for predicting retinal diseases
nork: Hasib, Mehadi Hasan, et al.
Argitaratua: (2021) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
nork: Sharma, Tanmoyee, et al.
Argitaratua: (2021) -
A secured federated learning system leveraging confidence score to identify retinal disease
nork: Eshan, M Sakib Osman, et al.
Argitaratua: (2023)