Deep learning-based hybrid multi-task model for adrenocortical carcinoma segmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Główni autorzy: | Datta, Nirjhor, Rashid, Md. Hasanur, Rahman, Samiur, Nodi, Naima Tahsin, Uddin, Moin |
---|---|
Kolejni autorzy: | Hossain, Muhammad Iqbal |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/22838 |
Podobne zapisy
-
Classification of peripheral blood cell images using deep learning
od: Aadi, Oyshik Ahmed, i wsp.
Wydane: (2024) -
Visual object classification from fMRI data
od: Newaz, Syed Mishar, i wsp.
Wydane: (2022) -
ProteoKnight: phage virion protein classification with CNN and uncertainty quantification
od: Bhuiyan, Abir Ahammed, i wsp.
Wydane: (2024) -
Diabetic retinopathy detection and classification by using deep learning
od: Hossain, Shahriar, i wsp.
Wydane: (2022) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
od: Reza, S. M. Mushfiq, i wsp.
Wydane: (2024)