Deep learning-based hybrid multi-task model for adrenocortical carcinoma segmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Autori principali: | Datta, Nirjhor, Rashid, Md. Hasanur, Rahman, Samiur, Nodi, Naima Tahsin, Uddin, Moin |
---|---|
Altri autori: | Hossain, Muhammad Iqbal |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2024
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/22838 |
Documenti analoghi
-
Classification of peripheral blood cell images using deep learning
di: Aadi, Oyshik Ahmed, et al.
Pubblicazione: (2024) -
Visual object classification from fMRI data
di: Newaz, Syed Mishar, et al.
Pubblicazione: (2022) -
ProteoKnight: phage virion protein classification with CNN and uncertainty quantification
di: Bhuiyan, Abir Ahammed, et al.
Pubblicazione: (2024) -
Diabetic retinopathy detection and classification by using deep learning
di: Hossain, Shahriar, et al.
Pubblicazione: (2022) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
di: Reza, S. M. Mushfiq, et al.
Pubblicazione: (2024)