Deep learning-based hybrid multi-task model for adrenocortical carcinoma segmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Päätekijät: | Datta, Nirjhor, Rashid, Md. Hasanur, Rahman, Samiur, Nodi, Naima Tahsin, Uddin, Moin |
---|---|
Muut tekijät: | Hossain, Muhammad Iqbal |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2024
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/22838 |
Samankaltaisia teoksia
-
Classification of peripheral blood cell images using deep learning
Tekijä: Aadi, Oyshik Ahmed, et al.
Julkaistu: (2024) -
Visual object classification from fMRI data
Tekijä: Newaz, Syed Mishar, et al.
Julkaistu: (2022) -
ProteoKnight: phage virion protein classification with CNN and uncertainty quantification
Tekijä: Bhuiyan, Abir Ahammed, et al.
Julkaistu: (2024) -
Diabetic retinopathy detection and classification by using deep learning
Tekijä: Hossain, Shahriar, et al.
Julkaistu: (2022) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
Tekijä: Reza, S. M. Mushfiq, et al.
Julkaistu: (2024)