Deep learning-based hybrid multi-task model for adrenocortical carcinoma segmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Egile Nagusiak: | Datta, Nirjhor, Rashid, Md. Hasanur, Rahman, Samiur, Nodi, Naima Tahsin, Uddin, Moin |
---|---|
Beste egile batzuk: | Hossain, Muhammad Iqbal |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22838 |
Antzeko izenburuak
-
Classification of peripheral blood cell images using deep learning
nork: Aadi, Oyshik Ahmed, et al.
Argitaratua: (2024) -
Visual object classification from fMRI data
nork: Newaz, Syed Mishar, et al.
Argitaratua: (2022) -
ProteoKnight: phage virion protein classification with CNN and uncertainty quantification
nork: Bhuiyan, Abir Ahammed, et al.
Argitaratua: (2024) -
Diabetic retinopathy detection and classification by using deep learning
nork: Hossain, Shahriar, et al.
Argitaratua: (2022) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
nork: Reza, S. M. Mushfiq, et al.
Argitaratua: (2024)