Deep learning-based hybrid multi-task model for adrenocortical carcinoma segmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2024.
Κύριοι συγγραφείς: | Datta, Nirjhor, Rashid, Md. Hasanur, Rahman, Samiur, Nodi, Naima Tahsin, Uddin, Moin |
---|---|
Άλλοι συγγραφείς: | Hossain, Muhammad Iqbal |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2024
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/22838 |
Παρόμοια τεκμήρια
-
Classification of peripheral blood cell images using deep learning
ανά: Aadi, Oyshik Ahmed, κ.ά.
Έκδοση: (2024) -
Visual object classification from fMRI data
ανά: Newaz, Syed Mishar, κ.ά.
Έκδοση: (2022) -
ProteoKnight: phage virion protein classification with CNN and uncertainty quantification
ανά: Bhuiyan, Abir Ahammed, κ.ά.
Έκδοση: (2024) -
Diabetic retinopathy detection and classification by using deep learning
ανά: Hossain, Shahriar, κ.ά.
Έκδοση: (2022) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
ανά: Reza, S. M. Mushfiq, κ.ά.
Έκδοση: (2024)