Application of deep learning in MRI classification of Schizophrenia
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Główni autorzy: | Joyee, Ramisa Fariha, Rodoshi, Lamia Hasan, Nadia, Yasmin |
---|---|
Kolejni autorzy: | Bin Ashraf, Faisal |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/22719 |
Podobne zapisy
-
Early Schizophrenia Diagnosis with 3D Convolutional Neural Network
od: Ashraf, S.M. Nabil, i wsp.
Wydane: (2021) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
od: Haque, Hossain MD. Hasibul, i wsp.
Wydane: (2024) -
Visual object classification from fMRI data
od: Newaz, Syed Mishar, i wsp.
Wydane: (2022) -
Enhancing multiclass brain tumor classification using deep learning: leveraging superior imaging representations to improve inferior modality performance
od: Hossain, Shah Md. Shakhawath, i wsp.
Wydane: (2024) -
Review on: the mechanism and function of Glia in parkinson's disease
od: Abedin, Khondokar Mezbahul
Wydane: (2023)