Application of deep learning in MRI classification of Schizophrenia
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Egile Nagusiak: | Joyee, Ramisa Fariha, Rodoshi, Lamia Hasan, Nadia, Yasmin |
---|---|
Beste egile batzuk: | Bin Ashraf, Faisal |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22719 |
Antzeko izenburuak
-
Early Schizophrenia Diagnosis with 3D Convolutional Neural Network
nork: Ashraf, S.M. Nabil, et al.
Argitaratua: (2021) -
In-depth analysis of deep learning architectures for brain tumor classification in MRI scans
nork: Haque, Hossain MD. Hasibul, et al.
Argitaratua: (2024) -
Visual object classification from fMRI data
nork: Newaz, Syed Mishar, et al.
Argitaratua: (2022) -
Enhancing multiclass brain tumor classification using deep learning: leveraging superior imaging representations to improve inferior modality performance
nork: Hossain, Shah Md. Shakhawath, et al.
Argitaratua: (2024) -
Review on: the mechanism and function of Glia in parkinson's disease
nork: Abedin, Khondokar Mezbahul
Argitaratua: (2023)