A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Главные авторы: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Другие авторы: | Chakrabarty, Amitabha |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2024
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/22671 |
Схожие документы
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
по: Auvy, Akib Al Mahmud, и др.
Опубликовано: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
по: Sharma, Tanmoyee, и др.
Опубликовано: (2021) -
Density based traffic control system for a four way intersection
по: Chowdhury, Faizul Bari, и др.
Опубликовано: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
по: Khan, Abde Musavvir, и др.
Опубликовано: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
по: Farzana, Maisha, и др.
Опубликовано: (2021)