A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Główni autorzy: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Kolejni autorzy: | Chakrabarty, Amitabha |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2024
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/22671 |
Podobne zapisy
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
od: Auvy, Akib Al Mahmud, i wsp.
Wydane: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
od: Sharma, Tanmoyee, i wsp.
Wydane: (2021) -
Density based traffic control system for a four way intersection
od: Chowdhury, Faizul Bari, i wsp.
Wydane: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
od: Khan, Abde Musavvir, i wsp.
Wydane: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
od: Farzana, Maisha, i wsp.
Wydane: (2021)