A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
主要な著者: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
その他の著者: | Chakrabarty, Amitabha |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2024
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/22671 |
類似資料
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
著者:: Auvy, Akib Al Mahmud, 等
出版事項: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
著者:: Sharma, Tanmoyee, 等
出版事項: (2021) -
Density based traffic control system for a four way intersection
著者:: Chowdhury, Faizul Bari, 等
出版事項: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
著者:: Khan, Abde Musavvir, 等
出版事項: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
著者:: Farzana, Maisha, 等
出版事項: (2021)