A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autori principali: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Altri autori: | Chakrabarty, Amitabha |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2024
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/22671 |
Documenti analoghi
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
di: Auvy, Akib Al Mahmud, et al.
Pubblicazione: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
di: Sharma, Tanmoyee, et al.
Pubblicazione: (2021) -
Density based traffic control system for a four way intersection
di: Chowdhury, Faizul Bari, et al.
Pubblicazione: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
di: Khan, Abde Musavvir, et al.
Pubblicazione: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
di: Farzana, Maisha, et al.
Pubblicazione: (2021)