A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Beste egile batzuk: | Chakrabarty, Amitabha |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22671 |
Antzeko izenburuak
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
nork: Auvy, Akib Al Mahmud, et al.
Argitaratua: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
nork: Sharma, Tanmoyee, et al.
Argitaratua: (2021) -
Density based traffic control system for a four way intersection
nork: Chowdhury, Faizul Bari, et al.
Argitaratua: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
nork: Khan, Abde Musavvir, et al.
Argitaratua: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
nork: Farzana, Maisha, et al.
Argitaratua: (2021)