A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Κύριοι συγγραφείς: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Άλλοι συγγραφείς: | Chakrabarty, Amitabha |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2024
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/22671 |
Παρόμοια τεκμήρια
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
ανά: Auvy, Akib Al Mahmud, κ.ά.
Έκδοση: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
ανά: Sharma, Tanmoyee, κ.ά.
Έκδοση: (2021) -
Density based traffic control system for a four way intersection
ανά: Chowdhury, Faizul Bari, κ.ά.
Έκδοση: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
ανά: Khan, Abde Musavvir, κ.ά.
Έκδοση: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
ανά: Farzana, Maisha, κ.ά.
Έκδοση: (2021)