A comparison of deep learning U‐Net architectures for semantic segmentation on panoramic X-ray images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autors principals: | Bin Mushfiq, Rahil, Zannah, Rafiatul, Bashar, Mubtasim, Alam, Md. Nafidul, Rahman, MD Aftabur |
---|---|
Altres autors: | Chakrabarty, Amitabha |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2024
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/22671 |
Ítems similars
-
Semantic segmentation with attention dense U-net for lung extraction from X-ray images
per: Auvy, Akib Al Mahmud, et al.
Publicat: (2023) -
Image segmentation of X-Ray and optical images using U-Net/UNet++ based deep learning architecture
per: Sharma, Tanmoyee, et al.
Publicat: (2021) -
Density based traffic control system for a four way intersection
per: Chowdhury, Faizul Bari, et al.
Publicat: (2024) -
Ejection fraction estimation using deep semantic segmentation neural network on 2D Echocardiography data
per: Khan, Abde Musavvir, et al.
Publicat: (2021) -
Semantic segmentation of tumor from 3D Structural MRI using U-Net Autoencoder
per: Farzana, Maisha, et al.
Publicat: (2021)