Optical flow based violence detection from video footage using hybrid MobileNet and Bi-LSTM
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autori principali: | Haque, Tashfia, Ahmed, Farhan Fuad, Ahmed, S. M. Irfan, Siam, Mohammad |
---|---|
Altri autori: | Alam, Md. Golam Rabiul |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2024
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/22667 |
Documenti analoghi
-
Real time action recognition from video footage
di: Apon, Tasnim Sakib, et al.
Pubblicazione: (2021) -
An integrated approach: fake review detection using convBERT-BiLSTM classification
di: Mahmud, Md. Anas, et al.
Pubblicazione: (2024) -
Automated intruder detection from image sequences using minimum volume sets
di: Ahmed, Tarem, et al.
Pubblicazione: (2016) -
Performance analysis of deep learning algorithms for Intrusion Detection System(IDS) of IoT Security
di: Fiha, Yeamin Jahan, et al.
Pubblicazione: (2022) -
Real-time crime detection using convolutional LSTM and YOLOv7
di: Sakiba, Cyrus, et al.
Pubblicazione: (2023)