Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Main Authors: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
其他作者: | Rhaman, Dr. Md. Khalilur |
格式: | Thesis |
語言: | English |
出版: |
Brac University
2024
|
主題: | |
在線閱讀: | http://hdl.handle.net/10361/22061 |
相似書籍
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
由: Uddin, Md. Minhaz, et al.
出版: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
由: Mahmud, Ishtiaque, et al.
出版: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
由: Afrin, Anika, et al.
出版: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
由: Mostafa, Tanzim, et al.
出版: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
由: Moon, Nowrin Tasnim, et al.
出版: (2023)