Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Главные авторы: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
Другие авторы: | Rhaman, Dr. Md. Khalilur |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2024
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/22061 |
Схожие документы
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
по: Uddin, Md. Minhaz, и др.
Опубликовано: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
по: Mahmud, Ishtiaque, и др.
Опубликовано: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
по: Afrin, Anika, и др.
Опубликовано: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
по: Mostafa, Tanzim, и др.
Опубликовано: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
по: Moon, Nowrin Tasnim, и др.
Опубликовано: (2023)