Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Main Authors: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
Outros Autores: | Rhaman, Dr. Md. Khalilur |
Formato: | Thesis |
Idioma: | English |
Publicado em: |
Brac University
2024
|
Assuntos: | |
Acesso em linha: | http://hdl.handle.net/10361/22061 |
Registos relacionados
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
Por: Uddin, Md. Minhaz, et al.
Publicado em: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
Por: Mahmud, Ishtiaque, et al.
Publicado em: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
Por: Afrin, Anika, et al.
Publicado em: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
Por: Mostafa, Tanzim, et al.
Publicado em: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
Por: Moon, Nowrin Tasnim, et al.
Publicado em: (2023)