Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
主要な著者: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
その他の著者: | Rhaman, Dr. Md. Khalilur |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2024
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/22061 |
類似資料
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
著者:: Uddin, Md. Minhaz, 等
出版事項: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
著者:: Mahmud, Ishtiaque, 等
出版事項: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
著者:: Afrin, Anika, 等
出版事項: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
著者:: Mostafa, Tanzim, 等
出版事項: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
著者:: Moon, Nowrin Tasnim, 等
出版事項: (2023)