Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Main Authors: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
Outros autores: | Rhaman, Dr. Md. Khalilur |
Formato: | Thesis |
Idioma: | English |
Publicado: |
Brac University
2024
|
Subjects: | |
Acceso en liña: | http://hdl.handle.net/10361/22061 |
Títulos similares
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
por: Uddin, Md. Minhaz, et al.
Publicado: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
por: Mahmud, Ishtiaque, et al.
Publicado: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
por: Afrin, Anika, et al.
Publicado: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
por: Mostafa, Tanzim, et al.
Publicado: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
por: Moon, Nowrin Tasnim, et al.
Publicado: (2023)