Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
Beste egile batzuk: | Rhaman, Dr. Md. Khalilur |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2024
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22061 |
Antzeko izenburuak
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
nork: Uddin, Md. Minhaz, et al.
Argitaratua: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
nork: Mahmud, Ishtiaque, et al.
Argitaratua: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
nork: Afrin, Anika, et al.
Argitaratua: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
nork: Mostafa, Tanzim, et al.
Argitaratua: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
nork: Moon, Nowrin Tasnim, et al.
Argitaratua: (2023)