Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autors principals: | Sanjana, Jasia, Al Muhit, Abdullah, Zia, Asma |
---|---|
Altres autors: | Rhaman, Dr. Md. Khalilur |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2024
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/22061 |
Ítems similars
-
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
per: Uddin, Md. Minhaz, et al.
Publicat: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
per: Mahmud, Ishtiaque, et al.
Publicat: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
per: Afrin, Anika, et al.
Publicat: (2023) -
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
per: Mostafa, Tanzim, et al.
Publicat: (2022) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
per: Moon, Nowrin Tasnim, et al.
Publicat: (2023)