Deep learning based arrhythmia classification on low-cost and low-compute MCU
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Zishan, Md Abu Obaida, Shihab, H M, Rahman, Gazi Mashrur, Islam, Sabik Sadman, Riya, Maliha Alam |
---|---|
Beste egile batzuk: | Mukta, Jannatun Noor |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/22018 |
Antzeko izenburuak
-
Analysis of deep learning models on low-light pest detection
nork: Irtiza, Md. Samin, et al.
Argitaratua: (2023) -
Predicting Macroeconomic and Macrofinancial Stress in Low-Income Countries /
nork: Weisfeld, Hans
Argitaratua: (2020) -
Low-income housing : multi-dimensional research perspectives /
Argitaratua: (2001) -
Machine learning approach for ECG analysis and predicting different heart diseases
nork: Tithi, Sushmita Roy, et al.
Argitaratua: (2019) -
Understanding the potential of Maggi soups among low income people in Dhaka city
nork: Shemanto, Ashfaqur Rahman
Argitaratua: (2017)