An efficient deep learning approach to detect neurodegenerative diseases using retinal images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Irfanuddin, Chowdhury Mohammad, Shafin, Wasique Islam, Ahmed, Koushik, Khan, Md. Hasib |
---|---|
Beste egile batzuk: | Md. Ashraful, Alam |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/21954 |
Antzeko izenburuak
-
An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
nork: Khan, Farhan Sakib, et al.
Argitaratua: (2022) -
Efficient image processing and machine learning approach for predicting retinal diseases
nork: Hasib, Mehadi Hasan, et al.
Argitaratua: (2021) -
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
nork: Nabil, Sheikh MD. Nafis Noor, et al.
Argitaratua: (2024) -
Critical retinal disease detection from optical coherence tomography images by deep convolutional neural network and explainable machine learning
nork: Datta, Pranab, et al.
Argitaratua: (2021) -
Detecting different stages of Alzheimer’s disease from MRI images using deep learning and computer vision techniques
nork: Rahman, Fardin, et al.
Argitaratua: (2024)