Prediction of genetic mutation from clinical data of sickle cell disease using few-shot siamese bidirectional LSTM and federated learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Alam, Salman, Oni, Atquiya Labiba, Samir, Jubair, Hossain, Asif Mosharrof |
---|---|
Beste egile batzuk: | Alam, Md.Golam Rabiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/21953 |
Antzeko izenburuak
-
Comprehensive fingerprint recognition utilizing one shot learning with Siamese Network
nork: Zaman, Sara Milham, et al.
Argitaratua: (2023) -
Malicious data classification in packet data network through hybrid meta deep learning
nork: Tapu, Sakib Uddin, et al.
Argitaratua: (2023) -
One voice is all you need: a one-shot approach to recognize you
nork: Dipto, Shahriar Rumi, et al.
Argitaratua: (2022) -
A secured federated learning system leveraging confidence score to identify retinal disease
nork: Eshan, M Sakib Osman, et al.
Argitaratua: (2023) -
Fortifying federated learning: security against model poisoning attacks
nork: Anan, Fabiha, et al.
Argitaratua: (2024)