Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Asıl Yazarlar: | Rukaiya, Maymuna, Khan Soumik, Md. Muhtadee Faiaz, Sakib, Sazzad Hossan, Islam, Md. Ashikul, Ishrak, Mohammad Farhan |
---|---|
Diğer Yazarlar: | Rhaman, Dr. Md. Khalilur |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2023
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/21922 |
Benzer Materyaller
-
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
Yazar:: Mostafa, Tanzim, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
Yazar:: Shawan, Naveed Rahman, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Infrared thermography based defect analysis of photovoltaic modules using machine learning
Yazar:: Mobin, Ovib Hassan, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
Yazar:: Hasan, Anita, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
Yazar:: Sanjana, Jasia, ve diğerleri
Baskı/Yayın Bilgisi: (2024)