Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Huvudupphovsmän: | Rukaiya, Maymuna, Khan Soumik, Md. Muhtadee Faiaz, Sakib, Sazzad Hossan, Islam, Md. Ashikul, Ishrak, Mohammad Farhan |
---|---|
Övriga upphovsmän: | Rhaman, Dr. Md. Khalilur |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2023
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/21922 |
Liknande verk
-
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
av: Mostafa, Tanzim, et al.
Publicerad: (2022) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
av: Shawan, Naveed Rahman, et al.
Publicerad: (2019) -
Infrared thermography based defect analysis of photovoltaic modules using machine learning
av: Mobin, Ovib Hassan, et al.
Publicerad: (2021) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
av: Hasan, Anita, et al.
Publicerad: (2022) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
av: Sanjana, Jasia, et al.
Publicerad: (2024)