Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Rukaiya, Maymuna, Khan Soumik, Md. Muhtadee Faiaz, Sakib, Sazzad Hossan, Islam, Md. Ashikul, Ishrak, Mohammad Farhan |
---|---|
Beste egile batzuk: | Rhaman, Dr. Md. Khalilur |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/21922 |
Antzeko izenburuak
-
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
nork: Mostafa, Tanzim, et al.
Argitaratua: (2022) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
nork: Shawan, Naveed Rahman, et al.
Argitaratua: (2019) -
Infrared thermography based defect analysis of photovoltaic modules using machine learning
nork: Mobin, Ovib Hassan, et al.
Argitaratua: (2021) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
nork: Hasan, Anita, et al.
Argitaratua: (2022) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
nork: Sanjana, Jasia, et al.
Argitaratua: (2024)