Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Κύριοι συγγραφείς: | Rukaiya, Maymuna, Khan Soumik, Md. Muhtadee Faiaz, Sakib, Sazzad Hossan, Islam, Md. Ashikul, Ishrak, Mohammad Farhan |
---|---|
Άλλοι συγγραφείς: | Rhaman, Dr. Md. Khalilur |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
Brac University
2023
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10361/21922 |
Παρόμοια τεκμήρια
-
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
ανά: Mostafa, Tanzim, κ.ά.
Έκδοση: (2022) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
ανά: Shawan, Naveed Rahman, κ.ά.
Έκδοση: (2019) -
Infrared thermography based defect analysis of photovoltaic modules using machine learning
ανά: Mobin, Ovib Hassan, κ.ά.
Έκδοση: (2021) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
ανά: Hasan, Anita, κ.ά.
Έκδοση: (2022) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
ανά: Sanjana, Jasia, κ.ά.
Έκδοση: (2024)