Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Autors principals: | Rukaiya, Maymuna, Khan Soumik, Md. Muhtadee Faiaz, Sakib, Sazzad Hossan, Islam, Md. Ashikul, Ishrak, Mohammad Farhan |
---|---|
Altres autors: | Rhaman, Dr. Md. Khalilur |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2023
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/21922 |
Ítems similars
-
Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
per: Mostafa, Tanzim, et al.
Publicat: (2022) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
per: Shawan, Naveed Rahman, et al.
Publicat: (2019) -
Infrared thermography based defect analysis of photovoltaic modules using machine learning
per: Mobin, Ovib Hassan, et al.
Publicat: (2021) -
Emotion analysis using machine learning model and deep learning model on DEAP dataset
per: Hasan, Anita, et al.
Publicat: (2022) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
per: Sanjana, Jasia, et al.
Publicat: (2024)