A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Главные авторы: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Другие авторы: | Alam, Md. Golam Rabiul |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
Brac University
2023
|
Предметы: | |
Online-ссылка: | http://hdl.handle.net/10361/21851 |
Схожие документы
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
по: Chowdhury, Asif Hasan, и др.
Опубликовано: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
по: Promit, Tahmid Ashrafee, и др.
Опубликовано: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
по: Ismail, Sayem Mohammad, и др.
Опубликовано: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
по: Haque, Abid Hossain, и др.
Опубликовано: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
по: Shahriar, Hasan, и др.
Опубликовано: (2022)