A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Główni autorzy: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Kolejni autorzy: | Alam, Md. Golam Rabiul |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2023
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/21851 |
Podobne zapisy
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
od: Chowdhury, Asif Hasan, i wsp.
Wydane: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
od: Promit, Tahmid Ashrafee, i wsp.
Wydane: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
od: Ismail, Sayem Mohammad, i wsp.
Wydane: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
od: Haque, Abid Hossain, i wsp.
Wydane: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
od: Shahriar, Hasan, i wsp.
Wydane: (2022)