A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Auteurs principaux: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Autres auteurs: | Alam, Md. Golam Rabiul |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2023
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/21851 |
Documents similaires
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
par: Chowdhury, Asif Hasan, et autres
Publié: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
par: Promit, Tahmid Ashrafee, et autres
Publié: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
par: Ismail, Sayem Mohammad, et autres
Publié: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
par: Haque, Abid Hossain, et autres
Publié: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
par: Shahriar, Hasan, et autres
Publié: (2022)