A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Päätekijät: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Muut tekijät: | Alam, Md. Golam Rabiul |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2023
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/21851 |
Samankaltaisia teoksia
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
Tekijä: Chowdhury, Asif Hasan, et al.
Julkaistu: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
Tekijä: Promit, Tahmid Ashrafee, et al.
Julkaistu: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
Tekijä: Ismail, Sayem Mohammad, et al.
Julkaistu: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
Tekijä: Haque, Abid Hossain, et al.
Julkaistu: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
Tekijä: Shahriar, Hasan, et al.
Julkaistu: (2022)