A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Autors principals: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Altres autors: | Alam, Md. Golam Rabiul |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2023
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/21851 |
Ítems similars
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
per: Chowdhury, Asif Hasan, et al.
Publicat: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
per: Promit, Tahmid Ashrafee, et al.
Publicat: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
per: Ismail, Sayem Mohammad, et al.
Publicat: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
per: Haque, Abid Hossain, et al.
Publicat: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
per: Shahriar, Hasan, et al.
Publicat: (2022)